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Dakota Uncertainty Quantification (UQ) 

 UQ goals and examples 

 Select Dakota examples for UQ: 
 Monte Carlo sampling 

 Local and global reliability 

 Polynomial chaos expansions / stochastic collocation 

 Mixed aleatory-epistemic approaches 

 Probabilistic design 

 

 Dakota primarily focuses on forward propagation 
 Secondarily on estimating parameter uncertainty given data 

 Not on processing experimental data to calculate uncertainties 



Drivers for Dakota UQ 

Current Dakota research and development largely focuses on efficient UQ for 

large-scale engineering analyses. 

DOE in general, ASC V&V in particular, are: 

 Responding to shift from test-based to modeling and simulation-based design 

and certification 

 Demanding risk-informed decision-making using credible M&S: 

 Predictive simulations: verified, validated for application domain of interest 

 Quantified margins and uncertainties: random variability effect is 

understood, best estimate with uncertainty prediction for decision-making 

 



 What? Determine variability, distributions, statistics of code outputs, 
given uncertainty in input factors 

 Why? Assess likelihood of typical or extreme outcomes.  Given input 
uncertainty… 

 Determine mean or median performance of a system 

 Assess variability in model response 

 Find probability of reaching failure/success criteria (reliability metrics) 

 Assess range/intervals of possible outcomes 

 Assess how close uncertainty-endowed code predictions are to 

 Experimental data  
(validation, is model sufficient for the intended application?) 

 Performance expectations or limits  
(quantification of margins and uncertainties; QMU) 

Why Perform  
Uncertainty Quantification? 



Many Potential Uncertainties in  
Simulation and Validation 

 physics/science parameters 

 statistical variation,  
inherent randomness 

 model form / accuracy 

 material properties 

 manufacturing quality 

 operating environment,  
interference 

 initial, boundary conditions; forcing 

 geometry / structure / connectivity 

 experimental error (measurement error, measurement bias) 

 numerical accuracy (mesh, solvers); approximation error 

 human reliability, subjective judgment, linguistic imprecision 
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Forward Parametric 
Uncertainty Quantification 

Input Variables u 
(physics parameters,  

geometry,  initial and  

boundary conditions) 

Computational 

Model 

Variable  

Performance 

Measures f(u) 

• Identify and characterize uncertain variables (may not be normal, uniform) 

• Forward propagate: quantify the effect that (potentially correlated) uncertain 
(nondeterministic) input variables have on model output: 

Uncertainties on outputs 

 Means, standard deviations 

 Probabilities 

 Reliabilities 

 PDF, CDF 

 Intervals 

 Belief, plausibility 

Uncertainties on inputs 

• Parameterized distributions: 
normal, uniform, gumbel, etc. 

• Means, standard deviations 

• PDF, CDF from data 

• Intervals 

• Belief structures 
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Example: 
Thermal Uncertainty Quantification 

 Device subject to heating (experiment or 
computational simulation) 

 Uncertainty in composition/ environment 
(thermal conductivity, density, boundary), 
parameterized by  
u1, …, uN 

 Response temperature f(u)=T(u1, …, uN)  
calculated by heat transfer code 

Given distributions of u1,…,uN, UQ 
methods calculate statistical info on 
outputs: 

• Mean(T), StdDev(T),  
Probability(T ≥ Tcritical) 

• Probability distribution of 
temperatures 

• Correlations (trends) and 
sensitivity of temperature 
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Example: Uncertainty in Boiling Rate in  
Nuclear Reactor Core 

Method 

ME_nnz ME_meannz ME_max 

Mean Std 

Dev 

Mean Std 

Dev 

Mean Std 

Dev 

LHS (40) 651.225 297.039 127.836 27.723 361.204 55.862 

LHS (400) 647.33 286.146 127.796 25.779 361.581 51.874 

LHS (4000) 688.261 292.687 129.175 25.450 364.317 50.884 

PCE (Θ(2)) 687.875 288.140 129.151 25.7015 364.366 50.315 

PCE (Θ (3)) 688.083 292.974 129.231 25.3989 364.310 50.869 

PCE (Θ (4)) 688.099 292.808 129.213 25.4491 364.313 50.872 

anisotropic uncertainty 

distribution in boiling rate 

throughout  quarter core model 
normally distributed inputs need not give 

rise to normal outputs… 

mean and standard deviation of key metrics 



Three Core Dakota UQ Methods 

 Sampling (Monte Carlo, Latin 
hypercube): robust, easy to understand, 
slow to converge / resolve statistics 

 Reliability: good at calculating probability 
of a particular behavior or failure / tail 
statistics; efficient, some methods are 
only local 

 Stochastic Expansions (PCE/SC global 
approximations): efficient tailored 
surrogates, statistics often derived 
analytically, far more efficient than 
sampling for reasonably smooth 
functions 

G(u) 

Region of u 

values where  

T ≥ Tcritical 



• sample mean 

 

 

• sample variance 

 

 

 

• full PDF(probabilities) 

Black-box UQ Workhorse:  
Random Sampling Methods 

Given distributions of u1,…,uN, sampling-based methods calculate 

sample statistics, e.g., on temperature T(u1,…,uN): 
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u3 

• Monte Carlo sampling,  Quasi-Monte Carlo 

• Centroidal Voroni Tessalation (CVT) 

• Latin hypercube (stratified) sampling: better 

convergence; stability across replicates 

Robust, but slow convergence: O(N-1/2),  

independent of dimension (in theory) 





N

i

iuT
N

T
1

)(
1

 



N

i

i TuT
N

T
1

2
)(

1
2



Example:  
Cantilever Beam UQ with Sampling 

 Dakota study with LHS  

 Determine mean system response, variability, margin to failure given 
 Density   P ~ Normal(500, 30) 

 Young’s modulus E ~ Normal(2.9e7, 2.e6) 

 Horizontal load  X ~ Normal(50, 3) 

 Vertical load   Y ~ Normal(100, 6) 

 (Dakota supports a wide range of distribution types) 

 Hold width and thickness at 1.0, L at 5. 

 Compute with respect to thresholds with  
probability_levels or response_levels 

 What is the probability(stress < 10000)?  

 What is the probability(mass < 1.5)?    

 What is the probability(displacement < 0.002)?   



Example:  
Cantilever Beam UQ with Sampling 

 Dakota study with LHS  

 Determine mean system response, variability, margin to failure given 
 Density  P ~ Normal(500, 30) 

 Young’s modulus E ~ Normal(2.9e7, 2.e6) 

 Horizontal load  X ~ Normal(50, 3) 

 Vertical load   Y ~ Normal(100, 6) 

 (Dakota supports a wide range of distribution types) 

 Hold width and thickness at 1.0, L at 5. 

 Compute with respect to thresholds with  
probability_levels or response_levels 

 What is the probability(stress < 10000)?  ~0.9 for uniform, 0.99 for normal 

 What is the probability(mass < 1.5)?  ~0.6 for uniform, 0.8 for normal  

 What is the probability(displacement < 0.002)?  ~0.6 for uniform, 0.7 for normal 



method 

  sampling  

  sample_type lhs  

  samples = 100 

  seed = 3845 

  num_probability_levels = 17 17 17                 

  probability_levels = 

   .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95 .99 .999 

   .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95 .99 .999 

   .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95 .99 .999 

  cumulative distribution  

  

  

variables 

  active uncertain 

  continuous_design = 3 

    upper_bounds = 1.2 1.2 6.0  

    lower_bounds = 0.8 0.8 4.0 

    descriptors    "w"     "t"     "L" 

  uniform_uncertain = 4 

    upper_bounds = 600. 35.E+6 60. 120. 

    lower_bounds = 400. 23.E+6 40. 80. 

    descriptors    'p'   'E'   'X'  'Y' 

  

… 

responses 

  response_functions = 3 

  descriptors = 'mass' 'stress' 'displacement' 

  no_gradients no_hessians 

Dakota Input:  
LHS Sampling for Cantilever Beam 



Dakota Output: 
LHS Sampling for Cantilever Beam 
 Moments and confidence intervals 

 

 

 

 

 

 

 

 CDF (and PDF) data  

 Level mappings for each response function: 

Cumulative Distribution Function (CDF) for mass: 

     Response Level  Probability Level  Reliability Index 

     --------------  -----------------  -----------------  

   1.1683297300e+00   1.0000000000e-03 

   1.1683297300e+00   1.0000000000e-02 

   1.2951111800e+00   5.0000000000e-02 

   1.3316578300e+00   1.0000000000e-01 

   1.3559746900e+00   1.5000000000e-01 

   1.3734105800e+00   2.0000000000e-01 

   1.4003385200e+00   3.0000000000e-01 

   1.4245467700e+00   4.0000000000e-01 

    

Statistics based on 100 samples: 

  

Moment-based statistics for each response function: 

                            Mean           Std Dev          Skewness          Kurtosis 

          mass  1.4460475709e+00  8.8239262134e-02 -1.6051074470e-01  2.5955294928e-01 

        stress  8.9986343326e+04  4.0344159128e+03  6.4230716871e-02  1.0335094626e-01 

  displacement  1.9378806350e-03  1.6660999428e-04  5.5574418567e-01  5.8860476955e-01 

  

95% confidence intervals for each response function: 

                    LowerCI_Mean      UpperCI_Mean    LowerCI_StdDev    UpperCI_StdDev 

          mass  1.4285389869e+00  1.4635561549e+00  7.7474676187e-02  1.0250536737e-01 

        stress  8.9185827682e+04  9.0786858970e+04  3.5422447886e+03  4.6866811355e+03 

  displacement  1.9048215975e-03  1.9709396725e-03  1.4628471549e-04  1.9354670764e-04 

CDF plotted 

in Matlab 



Challenge: Calculating  
Potentially Small Probability of Failure 

 Given uncertainty in materials, geometry, and environment, how 
to determine likelihood of failure: Probability(T  ≥ Tcritical)? 

 Perform 10,000 LHS samples and count how many exceed 
threshold;  
(better) perform adaptive importance sampling 

 

 

 

 

 

 

 

 

Mean value: make a linearity (and 

possibly normality) assumption and 

project; great for many parameters 

with efficient derivatives! 

 

Reliability: directly determine input 

variables which give rise to failure 

behaviors by solving an 

optimization problem for a most 

probable point  (MPP) of failure 
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Analytic Reliability: MPP Search 

Perform optimization in uncertain variable space to determine Most Probable 
Point (of response or failure occurring) for G(u) = T(u). 

Reliability Index Approach (RIA) 

G(u) 

Region of u 

values where  

T ≥ Tcritical 
map Tcritical to a 

probability 

All the usual nonlinear optimization 

tricks apply…  



Efficient Global Reliability Analysis 
Using Gaussian Process Surrogate + MMAIS 
 Efficient global optimization (EGO)-like approach to solve optimization problem 

 Expected feasibility function: balance exploration with local search near failure 
boundary to refine the GP 

 Cost competitive with best local MPP search methods, yet better probability of 
failure estimates; addresses nonlinear and multimodal challenges 

Gaussian process model  (level curves) of reliability limit state with 

  10 samples       28 samples 

explore 

exploit 

failure  

region 

safe  

region 



 Intrusive or non-intrusive 

 Wiener-Askey Generalized PCE: optimal basis selection leads to exponential 
convergence of statistics 

 

 

 

 

 

 

 Can also numerically generate basis orthogonal to empirical data (PDF/histogram) 

 

Approximate response with Galerkin projection using multivariate orthogonal 

polynomial basis functions defined over standard 

random variables 

 

Generalized Polynomial  
Chaos Expansions (PCE) 

R(ξ) ≈ f(u) 



Sample Designs to Form Polynomial Chaos or 
Stochastic Collocation Expansions  

Random sampling: PCE Tensor-product quadrature: PCE/SC 

Smolyak Sparse Grid: PCE/SC Cubature: PCE 

Stroud and extensions (Xiu, Cools): 

optimal multidimensional  

integration rules 

Expectation (sampling): 

– Sample w/i distribution of x  

– Compute expected value of 

product of R and each Yj 

Linear regression  

(“point collocation”): 

T
P

Q
 

S
S

G
 

Tensor product of 1-D integration rules, e.g., 

Gaussian quadrature 



Adaptive PCE/SC: 
Emphasize Key Dimensions 

 Judicious choice of new simulation runs 

 Uniform p-refinement 

 Stabilize 2-norm of covariance 

 Adaptive p-refinement 

 Estimate main effects/VBD to guide 

 h-adaptive: identify important regions 
and address discontinuities 

 h/p-adaptive: p for performance; 
h for robustness 

 

20 

Anisotropic index sets Anisotropic Gauss-Hermite  

~LHS 

SSG 
TPQ 



method, 

     local_reliability 

      num_probability_levels = 17 17 17      

       probability_levels = 

       .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 

.85 .9 .95 .99 .999 

       .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 

.85 .9 .95 .99 .999 

   .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 

.85 .9 .95 .99 .999 

       cumulative distribution 

responses 

  response_functions = 3 

  descriptors = 'mass' 'stress' 'displacement' 

  numerical_gradients 

    method_source dakota 

    interval_type central 

    fd_gradient_step_size = 0.0001 

 no_hessians 

 

Changes for Reliability, PCE 

method, 

  polynomial_chaos 

  sparse_grid_level = 2 

   sample_type lhs 

   samples = 10000 

   seed = 8572 

     num_probability_levels = 17 17 17      

     probability_levels = 

       .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 

.85 .9 .95 .99 .999 

       .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 

.85 .9 .95 .99 .999 

   .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 

.85 .9 .95 .99 .999 

       cumulative distribution 



Uncertainty Quantification Research in Dakota: 
New algorithms bridge robustness/efficiency gap 

Production New Under dev. Planned Collabs. 

Sampling Latin Hypercube, 

Monte Carlo 

Importance, 

Incremental 

Bootstrap, 

Jackknife 

FSU 

Reliability Local: Mean Value, 

First-order & 

second-order 

reliability methods 

(FORM, SORM) 

Global: Efficient 

global reliability 

analysis (EGRA) 

gradient-

enhanced 

recursive 

emulation, 

TGP 

Local:  

Notre Dame, 

Global: 

Vanderbilt 

Stochastic 

expansion 

PCE and SC with 

uniform & 

dimension-adaptive  

p-/h-refinement 

Local adapt 

refinement, 

gradient-

enhanced, 

compr sens 

Discrete rv, 

orthogonal 

least interp. 

Stanford,  

Purdue 

Other 

probabilistic 

Rand fields/ 

stoch proc 

Dimension 

reduction 

Cornell, 

Maryland 

Epistemic Interval-valued/ 

Second-order prob. 

(nested sampling) 

Opt-based interval 

estimation, 

Dempster-Shafer 

Bayesian, 

discrete/ 

model form 

Imprecise 

probability  

LANL,  

UT Austin 

Metrics & 

Global SA 

Importance factors, 

Partial correlations 

Main effects, 

Variance-based 

decomposition 

Stepwise 

regression 

 

LANL 

Research: Adaptive Refinement, Gradient Enhancement 

Adv. Deployment  
 

 

Fills Gaps 



Aleatory/Epistemic UQ:  
Nested (“Second-order” )Approaches 
 Propagate over epistemic and aleatory uncertainty, e.g.,  

UQ with bounds on the mean of a normal distribution (hyper-parameters) 

 Typical in regulatory analyses (e.g., NRC, WIPP) 

 Outer loop: epistemic (interval) variables, inner loop UQ over aleatory (probability) 
variables; potentially costly, not conservative 

 If treating epistemic as uniform, do not analyze probabilistically! 
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Dakota Mixed UQ with Nested Model 
method 

  id_method = 'EPISTEMIC' 

  model_pointer = 'EPIST_M' 

  sampling sample_type lhs   

  samples = 5 seed = 12347 

  

model, 

  id_model = 'EPIST_M' 

  nested  

  variables_pointer  = 'EPIST_V' 

  sub_method_pointer = 'ALEATORY' 

  responses_pointer  = 'EPIST_R' 

  primary_variable_mapping   = 'X'    'Y' 

  secondary_variable_mapping = 'mean' 'mean' 

  primary_response_mapping   = 1. 0. 0. 0. 0. 0. 0. 0. 0. 

                               0. 0. 0. 0. 1. 0. 0. 0. 0. 

                               0. 0. 0. 0. 0. 0. 0. 0. 1. 

  

variables, 

  id_variables = 'EPIST_V' 

  interval_uncertain = 2  

  num_intervals = 1 1  

  interval_probabilities = 1.0 1.0  

  upper_bounds = 600.  1200. 

  lower_bounds = 400.  800. 

  

responses,  

  id_responses = 'EPIST_R' 

  response_functions = 3 

  descriptors ='mean_mass' '95th_perc_stress''95th_perc_disp' 

  no_gradients no_hessians 

  

epistemic 

sampling 

aleatory 

sampling 

simulation 

• Two models, each with a 
different set of variables 

• Outer method operates 
on nested model 

• Inner method operates 
on simulation model 



Example Output: Intervals on Statistics 

PCE Input (examples/methods/dakota_uq_cantilever_2nd_order.in) 

 

<<<<< Iterator nond_sampling completed. 

<<<<< Function evaluation summary (ALEAT_I): 971 total (971 

new, 0 duplicate) 

 

Statistics based on 50 samples: 

 

Min and Max values for each response function: 

mean_wt:  Min = 9.5209117200e+00  Max = 9.5209117200e+00 

ccdf_beta_s:  Min = 1.8001336086e+00  Max = 4.0744019409e+00 

ccdf_beta_d:  Min = 1.9403177486e+00  Max = 3.7628144053e+00 

 

Simple Correlation Matrix between input and output: 

                  mean_wt  ccdf_beta_s  ccdf_beta_d 

      X_mean  9.40220e-16 -6.38145e-01 -9.14016e-01 

      Y_mean  1.38778e-15 -7.93481e-01 -4.39133e-01 

       …. 

 

epistemic 

sampling 

aleatory 

UQ 

simulation 



Interval Estimation Approach 
(Probability Bounds Analysis) 

 Propagate intervals through simulation code 

 Outer loop:  determine interval on statistics, e.g., mean, 
variance 

 global optimization problem:  find max/min of statistic 
of interest, given bound constrained interval variables 

 use EGO to solve 2 optimization problems with 
essentially one Gaussian process surrogate 

 Inner loop:  Use sampling, PCE, etc., to determine the CDFs 
or moments with respect to the aleatory variables 
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Interval Analysis can be 
Tractable for Large-Scale Apps 

27 

Multiple cells  

within DSTE 

Converge to more conservative bounds with 10—100x less evaluations 



Potential flow Vortex lattice 

Smagorinsky-LES Germano-LES 

DNS 

SA-RANS KE-RANS-NBC KE-RANS-DBC 

 

Model Form UQ in  
Fluid/Structure Interactions 

Discrete model choices for same physics: 

 A clear hierarchy of fidelity (low to high) 

 An ensemble of models that are all credible  
(lacking a clear preference structure) 

 With data: Bayesian model selection 

 Without data: epistemic model form  
uncertainty propagation 

 

 

 Combination: 

 

 

 

SA-RANS KE-RANS-NBC KE-RANS-DBC 

Low 

Med 

High 

Horizontal Axis 

Wind Turbine

Vertical Axis 

Wind Turbine

wind turbine applications 



Multifidelity UQ using Stochastic Expansions 

• High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ 

• Low fidelity “design” codes often exist that are predictive of basic trends 

• Can we leverage LF codes w/i HF UQ in a rigorous manner?  global approxs. of 
model discrepancy 

 
Nlo >> Nhi 

discrepancy 

CACTUS: Code for Axial and 

Crossflow TUrbine Simulation 
Low fidelity 

High fidelity: DG formulation for LES  

Full Computational Fluid Dynamics/ 

Fluid-Structure Interaction 



Uncertainty Quantification  
not Addressed Here 

 Efficient epistemic UQ [Dakota] 

 Fuzzy sets (Zadeh) 

 Imprecise Probability (Walley) 

 Dempster-Shafer Theory of Evidence (Klir, Oberkampf, Ferson) [Dakota] 

 Possibility theory (Joslyn) 

 Probability bounds analysis (p-boxes) 

 Info-gap analysis (Ben-Haim) 
 

 Bayesian model calibration / inference via MCMC [Dakota] 

 Other Bayesian approaches:  Bayesian belief networks, Bayesian updating, 
Robust Bayes, etc. 

 Scenario evaluation 

 

(Some available in [Dakota]) 



Dakota UQ: Summary, Relevant Methods 

 What? Understand code output uncertainty / variability 

 Why? Risk-informed decisions with variability, possible outcomes 

 How? What Dakota methods are relevant? 

character method class problem character variants 

aleatory probabilistic sampling nonsmooth, multimodal, 

modest cost, # variables 

Monte Carlo, LHS, 

importance 

local reliability smooth, unimodal, more 

variables, failure modes 

mean value and MPP, 

FORM/SORM,  

global reliability nonsmooth, multimodal, 

low dimensional 

EGRA 

stochastic expansions nonsmooth, multimodal, 

low dimension 

polynomial chaos, 

stochastic collocation 

epistemic interval estimation simple intervals global/local optim, sampling 

evidence theory belief structures global/local evidence 

both nested UQ mixed aleatory / epistemic nested 

 See Dakota Usage Guidelines in User’s Manual 

 Analyze tabular output with third-party statistics packages 
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 Dakota User’s Manual: Uncertainty Quantification Capabilities 

 Dakota Theory Manual 

 Corresponding Reference Manual sections 


